什么是有理数和无理数的定义(什么是有理数和无理数)
今天小编苏苏来为大家解答以上的问题。什么是有理数和无理数的定义,什么是有理数和无理数相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、无限不循环小数和开根开不尽的数叫无理数 ,比如π,3.141592653...而有理数恰恰与它相反,整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。
2、这一定义在数的十进制和其他进位制(如二进制)下都适用。
3、数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。
4、希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。
5、不是有理数的实数遂称为无理数。
6、 所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
7、有理数分为整数和分数整数又分为正整数、负整数和0分数又分为正分数、负分数正整数和0又被称为自然数如3,-98.11,5.72727272……,7/22都是有理数。
8、有理数还可以划分为正整数、负整数、正分数、负分数和0。
9、全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。
10、有理数集是实数集的子集。
11、相关的内容见数系的扩张。
12、有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律 a+(b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;⑤乘法的交换律 ab=ba;⑥乘法的结合律 a(bc)=(ab)c;⑦分配律 a(b+c)=ab+ac;⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a;⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
13、⑩0a=0 文字解释:一个数乘0还等于这个数。
14、此外,有理数是一个序域,即在其上存在一个次序关系≤。
15、有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。
16、由此不难推知,不存在最大的有理数。
17、值得一提的是有理数的名称。
18、“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。
19、事实上,这似乎是一个翻译上的失误。
20、有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。
21、中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
22、但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。
23、所以这个词的意义也很显豁,就是整数的“比”。
24、与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
25、 有理数加减混合运算1.理数加减统一成加法的意义:对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。
26、2.有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。
27、(2)运用加法法则,加法交换律,加法结合律简便运算。
28、有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。
29、一般情况下,有理数是这样分类的:整数、分数;正数、负数和零;负有理数,非负有理数 整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。
30、我们日常经常使用有理数的。
31、比如多少钱,多少斤等。
32、 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数。
本文就为大家分享到这里,希望小伙伴们会喜欢。
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
大众CC作为一款备受关注的中型轿车,凭借其优雅的设计和出色的性能一直吸引着众多消费者的目光。2025款大众CC...浏览全文>>
-
2025款阜阳途锐新车正式上市,凭借其卓越的性能和豪华配置吸引了众多消费者的关注。这款车型以最低售价55 88...浏览全文>>
-
在准备购买一辆汽车之前,了解车辆的落地价格是非常重要的。所谓落地价,是指购车时除了车款之外还需要支付的...浏览全文>>
-
安徽淮南地区的长安启源E07作为一款备受关注的新能源车型,凭借其时尚的设计、丰富的配置以及出色的续航能力,...浏览全文>>
-
安徽淮南长安启源A05 2025款新车现已正式上市,这款车型以其高性价比和出色性能吸引了众多消费者的关注。作为...浏览全文>>
-
安徽阜阳地区的威然车型在近期进行了配置上的升级,对于想要购买这款MPV的消费者来说,这是一个值得关注的消息...浏览全文>>
-
随着汽车市场的不断发展,SUV车型因其宽敞的空间和多功能性受到了越来越多消费者的青睐。作为大众旗下的高端旗...浏览全文>>
-
安徽蚌埠地区想要购买长安启源E07这款新能源汽车的朋友,可以参考以下信息来做出更明智的选择。长安启源E07定...浏览全文>>
-
随着汽车市场的不断发展,2025款安庆高尔夫作为一款备受关注的车型,其价格和配置自然成为消费者热议的话题。...浏览全文>>
-
近期,安徽蚌埠地区的帕萨特车型迎来了新一轮的价格调整,其落地价再次创下新低,吸引了众多消费者的关注。作...浏览全文>>
- 悉尼最后几个年薪低于 10 万美元的郊区
- 2025 年新南威尔士州值得投资的地方
- 揭秘在澳大利亚买房需要多少收入
- 悉尼最后几个年薪低于 10 万美元的郊区
- 昆士兰有望成为澳大利亚房地产强国之一
- MSI 推出首款双模式 4K 曲面电竞显示器
- 飞利浦 Screeneo GamePix 900:在发布前进行预览
- 您会在这个奇怪的电动露营三轮车里露营吗
- Meross 推出支持 Matter 的智能恒温器
- 配备出色 3K OLED 显示屏的 Acer Swift 16 现已降价至史上最低价
- Acer Predator Helios 18 RTX 4080 游戏笔记本电脑 现优惠 725 美元
- VivoX200Pro视频和新样张揭示了200MP蔡司变焦相机的锐利眼睛可以达到多远
- 派对氛围天文爱好者又一次欣赏到极光秀
- iPhone16相机控制按钮有史以来最不苹果的东西
- 贾雷尔夸萨与利物浦签订新合同
- 首款在安兔兔上得分300万的手机拥有非常强大的SoC即将发布
- HumaninMotionRobotics的自平衡XoMotion外骨骼获得加拿大批准用于物理治疗
- 龙宫样本对之前关于富碳小行星形成的观点提出了质疑
- 凯文德布劳内伤情更新曼城球星的伤势进展和可能的回归日期
- 实验室实验表明用核武器轰炸一颗巨大的小行星可以拯救地球